Human health risk assessment by As environmental exposure in Paracatu: An integrated approach

C.A. Lima
Independent Risk Assessor

Z.C. Castilhos
Center for Mineral Technology, Ministry of Science, Technology and Innovation, Rio de Janeiro, Brazil

ABSTRACT: The objective of this study was to estimate the potential risk on the health of residents of Paracatu (adults and children) due to exposure to arsenic present in soil, water, air and food. For the assessed receptors, the risk due to the present contamination scenario was higher than the limit considered acceptable. The main pathways were ingestion of water while swimming and inhalation of particulates. It is important to highlight that human health risk assessment is a very conservative modeling, trying to protect the human health including critical subpopulations. Epidemiological study carried out at Paracatu city will bring new elements to the uncertainties in the human health risk assessment.

1 INTRODUCTION

Arsenic (As) is a naturally occurring element widely distributed in the Earth's crust. However, it is one of the most toxic elements to humans, whose exposure usually occurs through food, soil, water and air. The relationship between the intensity of the environmental contamination and the potential risks to human health can be assessed by the human health risk assessment methodology proposed by USEPA (1989). This methodology allows expressing risk as a comparable numeric estimates, which permits to establish priority of impacted areas, as well as the evaluation of remediation techniques. Therefore, the objective of this study was to estimate the potential risk on the health of residents of Paracatu (adults and children) due to exposure to arsenic present in soil, water, air and food. This study is part of the environmental and health assessment conducted by Brazilian research institutions under the general coordination of Center for Mineral Technology (CETEM).

2 METHODS

2.1 Study area

Paracatu (8,229.6 km²) has a population of ca. 90,000 inhabitants, of which about 95% live in the urban area. The economy is centered on cattle raising, agriculture (mainly soybean, corn, rice and beans) and gold mining. The gold-mine operations in Morro do Ouro, a low-grade gold deposit located close to the northern border of Paracatu city, began in the late 80s. Nowadays, it is the largest open pit gold mine in the world.

2.2 Sampling and analysis

Surface water, sediments and soil from the sub-basins of Córrego Rico and Ribeirão-Entre-Ribeiros, which may be impacted by gold mining, were collected. Samples were also collected in the sub-basin of the Escurio river (reference area). Arsenic levels were analyzed in all samples (Bidone et al., 2014). In addition, arsenic levels were accessed in atmospheric PM (Zamboni et al., 2014). Moreover, tap water samples provided by the water supply company were collected. Arsenic concentration resulted not only below the drinking-water quality criteria (10 µg/L) but also, below the limit of detection (<0.5 µg/L), except one sample (1.6 µg/L) (Bidone et al., 2014). Thus, ingestion of tap water was not considered an exposure pathway in this risk assessment and the “water ingestion” in this work is related only to the ingestion of water while swimming.

2.3 Human Health Risk Assessment

The human health risk assessment was accomplished according to the methodology proposed by USEPA (1989) and the guidelines suggested by CONAMA 420 (2009). This methodology is composed of four stages: 1) elaboration of a qualitative conceptual model concerning arsenic contamination and transference among environmental multimedia, exposure pathways and potential receptors: adults and children; 2) chronic exposure assess-
roent (magnitude, frequency and duration of the exposure) for the receptors and exposure pathways previously selected (by underestimated or measured As levels in soils, freshwater, tap water and atmospheric PM); 3) Toxicity assessment: the weight of evidence for As carcinogenicity (Group A) exists and a carcinogenic unit risk (which depends on the exposure pathway and is related to the likelihood of developing cancer as a result of that specific exposure) is provided and the reference of dose outputs of the exposure and toxicity assessments characterization, which summarizes and combines to characterize baseline risks, both in quantitative expressions and qualitative statements.

3 RESULTS AND DISCUSSION

Figure 1 shows the conceptual model developed for the study area after a qualitative risk assessment.

For adults, the hazard quotient regarding the exposure to non-carcinogenic contaminants for all assessed exposure pathways was less than 1, result-

For children, the hazard quotient to non-carinogenic contaminants for all assessed exposure index (sum of all exposure pathways HQs) was

ure 4). For carcinogenic effects, the Incremental Lifetime Cancer Risk (ILCR) was higher than 10^{-3} (for the ingestion of water and inhalation of particulates exposure pathway), resulting in an unacceptable risk (Figure 5).

4 CONCLUSIONS

The results showed that the environmental exposure to As does not represent potential hazard of non-carcinogenic effects for adults, but children are at risk. For carcinogenic effects, children and adults are at risk. The pathways that contributed most to this result were ingestion of water (while swimming) and inhalation of particulates.

REFERENCES

Bidone, E., Castilhos, Z., Santos, M., Silva, R., Cesar, R. & Ferreira, M. 2014. Arsenic in soils and sediments from Paracatu, Brazil. This issue.

Figure 2. Noncarcinogenic hazard for adult residents. Zamboni, W., Mattos, J., Silva, L., Carneiro, M., Monteiro, M. & Castilhos, Z. 2014. As in atmospheric particulate matter at Paracatu-Brazil. This issue.